Integration with Time Machine

Jim Dovey
alka Alan Quatermain of AwkwardTV

http://alanquatermain.net/

http://alanquatermain.net
http://alanquatermain.net

What we’ll cover

* Who will use this?
* Concepts and design
* Ul elements, events
* Public API (a whole two functions!)

* Private API

* An example Cocoa controller class

What we won’t cover

* Snapshots

* Used by Xcode !

* Useful for managing non-bundled collections of discrete files
* Triggering backups programatically

* BUBackUpNow() function

Who will use this!?

Who will use this!?

* Applications managing collections of data

Who will use this!?

* Applications managing collections of data
e Address Book, Mail, iPhoto

Who will use this!?

* Applications managing collections of data
e Address Book, Mail, iPhoto

e iTunes,iCal

Who will use this!?

* Applications managing collections of data
e Address Book, Mail, iPhoto

e iTunes,iCal

* Library, Ledgers, CRM

Who will use this!?

* Applications managing collections of data
e Address Book, Mail, iPhoto

* iTunes,iCal
* Library, Ledgers, CRM

* Apps with a desire to handle partial dataset restorations

Who will use this!?

* Applications managing collections of data
e Address Book, Mail, iPhoto

* iTunes,iCal
* Library, Ledgers, CRM

* Apps with a desire to handle partial dataset restorations

e CoreData

Time Machine User Interface

Time Machine User Interface

* One large fullscreen window

Time Machine User Interface

* One large fullscreen window
* A collection of images
* Time Machine ‘windows’ aren’t (necessarily) actual windows

* Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

Time Machine User Interface

* One large fullscreen window
* A collection of images
* Time Machine ‘windows’ aren’t (necessarily) actual windows

* Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

* Time Machine scrolls through these windows for you

Time Machine User Interface

* One large fullscreen window
* A collection of images
* Time Machine ‘windows’ aren’t (necessarily) actual windows

* Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

* Time Machine scrolls through these windows for you

* Your app is alerted when a real window is required, and your
app handles display & input for that window.

Events and Callbacks

Time Machine handles the interface for you— you only have
to provide some callback routines.

BURegisterStartTimeMachineFromDock(...);
BURegisterRequestSnapshotImage(...);
BURegisterTimeMachineDismissed(...);
BURegisterTimeMachineRestore(...);

Events and Callbacks

Time Machine handles the interface for you— you only have
to provide some callback routines.

BURegisterStartTimeMachineFromDock(...);
BURegisterRequestSnapshotImage(...);
BURegisterTimeMachineDismissed(...);
BURegisterTimeMachineRestore(...);

The ‘events’ posted by Time Machine include the startup request,
actions, dismissal (cancel), restore (one or all), activate/deactivate
snapshot windows, and requests for snapshot or thumbnail
Images.

Public API

Apple has released two functions:

CSBackupIsItemExcluded(CFURLRef i1tem, Boolean * byPath);

CSBackupSetItemExcluded(CFURLRef 1item, Boolean exclude,
Boolean byPath);

These routines allow you to inform the backup system of cache
files or other oft-changed data which need not be backed up.

Anything further than this requires that we resort to accessing the
private API...

Private API

Private API

* Request notification of Time Machine invocation

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

* If in a non-applicable state, don’t start time machine

* Modal loops, active document is untitled/unsaved

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

* If in a non-applicable state, don’t start time machine
* Modal loops, active document is untitled/unsaved

* Answer callbacks to provide snapshot window images
corresponding to backup data

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

* If in a non-applicable state, don’t start time machine
* Modal loops, active document is untitled/unsaved

* Answer callbacks to provide snapshot window images
corresponding to backup data

* Handle activation and deactivation of individual snapshots

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

* If in a non-applicable state, don’t start time machine
* Modal loops, active document is untitled/unsaved

* Answer callbacks to provide snapshot window images
corresponding to backup data

* Handle activation and deactivation of individual snapshots

* Restore if so requested, or else revert to prior state upon
dismissal.

Startup

Startup

* When your app starts, call
BURegisterStartTimeMachineFromDock();

Startup

* When your app starts, call
BURegisterStartTimeMachineFromDock();

* Your callback returns nothing and takes no arguments.

Startup

* When your app starts, call
BURegisterStartTimeMachineFromDock();

* Your callback returns nothing and takes no arguments.

* The callback will fire when the user clicks the Time Machine

icon in the dock. It’s still up to you to launch the Time Machine
Ul, however.

Startup

* When your app starts, call
BURegisterStartTimeMachineFromDock();

* Your callback returns nothing and takes no arguments.

* The callback will fire when the user clicks the Time Machine
icon in the dock. It’s still up to you to launch the Time Machine
Ul, however.

typedef void (*BUStartTimeMachineCallBack)(void);

volid BURegisterStartTimeMachineFromDock(BUStartTimeMachineCallBack
cb);

void BUStartTimeMachine(int windowNumber, CFURLRef urlForWindow,
BUAction flags);

Data Callbacks

Data Callbacks

* Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

Data Callbacks

* Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

* Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

Data Callbacks

* Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

* Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

* To generate a snapshot image, create a window for the data at
the given URL, and call BUUpdateSnapshotimage(), providing the
CG window number (using -[NSWindow windowNumber]) and
the provided URL as parameters.

Data Callbacks

* Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

* Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

* To generate a snapshot image, create a window for the data at
the given URL, and call BUUpdateSnapshotimage(), providing the
CG window number (using -[NSWindow windowNumber]) and
the provided URL as parameters.

typedef void (*BURequestSnapshotImageCallBack)(void * token,
CFURLRef backupURL);

vold BURegisterRequestSnapshotImage(void * token,
BURequestSnapshotCallBack callback);

volid BUUpdateSnapshotImage(int windowNumber, CFURLRef url);

Snapshot Events

Snapshot Events

* You must provide callbacks to be notified when snapshots are
focussed or blurred.

Snapshot Events

* You must provide callbacks to be notified when snapshots are
focussed or blurred.

* When these callbacks are called, the application must display or
remove a window at the given coordinates.

Snapshot Events

* You must provide callbacks to be notified when snapshots are
focussed or blurred.

* When these callbacks are called, the application must display or
remove a window at the given coordinates.

* When done processing, call BUActivatedSnapshot() or
BUDeactivatedSnapshot() as appropriate.

Snapshot Events

* You must provide callbacks to be notified when snapshots are
focussed or blurred.

* When these callbacks are called, the application must display or
remove a window at the given coordinates.

* When done processing, call BUActivatedSnapshot() or
BUDeactivatedSnapshot() as appropriate.

typedef void (*BUActivateSnapshotCallBack)(void * token, CFURLRef
backupURL, CGRect workingBounds);

typedef void (*BUDeactivateSnapshotCallBack)(void * token, CFURLRef
backupURL);

volid BURegisterActivateSnapshot(void * token,
BUActivateSnapshotCallBack callback);

vold BURegisterDeactivateSnapshot(void * token,
BUDeactivateSnapshotCallBack callback);

volid BUActivatedSnapshot(int windowNumber, CFURLRef url);

volid BUDeactivatedSnapshot(int windowNumber, CFURLRef url);

Action Callbacks

Action Callbacks

* Two main actions: restore and dismiss

Action Callbacks

* Two main actions: restore and dismiss

* Restore provides a flag to indicate whether to restore all items
or just a selection.

Action Callbacks

* Two main actions: restore and dismiss

* Restore provides a flag to indicate whether to restore all items
or just a selection.

* Dismissal only triggers after the Time Machine Ul has gone away.

Action Callbacks

* Two main actions: restore and dismiss

* Restore provides a flag to indicate whether to restore all items
or just a selection.

* Dismissal only triggers after the Time Machine Ul has gone away.

* To programatically dismiss, call BUTimeMachineAction(1);

Action Callbacks

* Two main actions: restore and dismiss

* Restore provides a flag to indicate whether to restore all items
or just a selection.

* Dismissal only triggers after the Time Machine Ul has gone away.

* To programatically dismiss, call BUTimeMachineAction(1);

typedef void (*BUTimeMachineDismissedCallBack)(void * token);

typedef void (*BUTimeMachineRestoreCallBack)(void * token, CFURLRef
backupURL, CFURLRef 1liveURL, Boolean restoreAll,
CFDictionaryRef userInfo);

volid BURegisterTimeMachineDismissed(void * token,
BUTimeMachineDismissedCallBack callback);

volid BURegisterTimeMachineRestore(void * token,
BUTimeMachineRestoreCallBack calback);

void BUTimeMachineAction(BUAction action);

AQTimeMachineController

AQTimeMachineController

* Implemented in Objective-C 2.0

AQTimeMachineController

* Implemented in Objective-C 2.0

* Singleton class

AQTimeMachineController

* Implemented in Objective-C 2.0
* Singleton class
* Designed to handle most of the work for you

* You shouldn’t need to call BUxxxx() methods yourself

AQTimeMachineController

* Implemented in Objective-C 2.0
* Singleton class
* Designed to handle most of the work for you
* You shouldn’t need to call BUxxxx() methods yourself

* You implement a delegate to provide application-specific data

AQTimeMachineController

* Implemented in Objective-C 2.0
* Singleton class
* Designed to handle most of the work for you
* You shouldn’t need to call BUxxxx() methods yourself
* You implement a delegate to provide application-specific data

* |deally this delegate should be concerned only with Time
Machine, and should be your only Time Machine-handling class

Properties

* @property(assign) id<AQTimeMachineDelegate> weak
delegate;

* Synchronized access, non-retaining
* @property NSRect workingBounds;

* The current snapshot bounds set by Time Machine
* @property BOOL changedltemsOnly;

* YES if the Ul should only show changed items
* @property BOOL inTimeMachine;

* Check to see if Time Machine actions should be performed

General Functions

* + (AQTimeMachineController *) timeMachineController;
* Fetch the singleton instance

* - (BOOL) canEnterTimeMachine;
* A simple check, will call the delegate

* - (IBAction) browseBackups: (id) sender;
* When you want your own Time Machine button

* - (void) dismissTimeMachine;

* Close down the Time Machine Ul

* - (void) invalidateSnapshotlmages;

* When your Ul has changed, updates snapshots

Controller Tasks

Controller Tasks

* Handles Time Machine startup notifications

* Requires a delegate to be set prior to this

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

e Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

e Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

* Maintains a list of window controller to URL mappings, one for
each snapshot window

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

e Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

* Maintains a list of window controller to URL mappings, one for
each snapshot window

* Handles updates to snapshot images

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

e Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

* Maintains a list of window controller to URL mappings, one for
each snapshot window

* Handles updates to snapshot images

* Activates and deactivates snapshots, notifying delegate

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

e Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

* Maintains a list of window controller to URL mappings, one for
each snapshot window

* Handles updates to snapshot images
* Activates and deactivates snapshots, notifying delegate

* Calls delegate when a restore action is requested

AQTimeMachineController Code

Delegate Tasks

Determines whether the app can enter Time Machine

Creates and returns controllers and data paths for the live
window and any snapshot windows requested

Implements data restoration
Optionally:
* Performs setup before & after entering Time Machine

* Performs actions before & after snapshot activation/
deactivation

’

* Makes any changes required for ‘show changed items only

* Any app-specific cleanup when Time Machine is dismissed

ate

Useful Data

Useful Data

* Keep a record of all snapshot NSDocuments, indexed by path
or URL

Useful Data

* Keep a record of all snapshot NSDocuments, indexed by path
or URL

* Keep track of the current document

Useful Data

* Keep a record of all snapshot NSDocuments, indexed by path
or URL

* Keep track of the current document

* Store any document user-interface state which is likely to
change while in Time Machine

 Search box contents, list selections

Useful Data

* Keep a record of all snapshot NSDocuments, indexed by path
or URL

* Keep track of the current document

* Store any document user-interface state which is likely to
change while in Time Machine

 Search box contents, list selections

* Ensure that no documents are editable while in Time Machine

-canEnterTimeMachine

-canEnterTimeMachine

* Check for modal panels:

* [[[INSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

-canEnterTimeMachine

* Check for modal panels:

* [[[INSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

* Check for an open & stored current document:

* [[NSDocumentController sharedDocumentController]
currentDocument]

-canEnterTimeMachine

* Check for modal panels:

* [[[INSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

* Check for an open & stored current document:

* [[NSDocumentController sharedDocumentController]
currentDocument]

e Document must have window controllers

-canEnterTimeMachine

* Check for modal panels:

* [[[INSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

* Check for an open & stored current document:

* [[NSDocumentController sharedDocumentController]
currentDocument]

e Document must have window controllers

* No sheet should be attached:

* [[ctrl window] attachedSheet]

Snapshot window controllers

Snapshot window controllers

* You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

Snapshot window controllers

* You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

* Create using -[NSDocumentController
makeDocumentWithContentsOfURL:of Type:error:]

Snapshot window controllers

* You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

* Create using -[NSDocumentController
makeDocumentWithContentsOfURL:of Type:error:]

* Use -makeWindowControllers to setup the controllers,
rather than letting NSDocument put itself onscreen

Updating snapshots

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:

- Before Time Machine activates

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:
- Before Time Machine activates

- When deactivating snapshots

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:

- When activating snapshots

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

e Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:
- When activating snapshots

- When restoring or dismissing Time Machine

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

* Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:
- When activating snapshots
- When restoring or dismissing Time Machine

* Also install your own handlers to invalidate & update snapshots
In response to user activity

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

* Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:
- When activating snapshots
- When restoring or dismissing Time Machine

* Also install your own handlers to invalidate & update snapshots
In response to user activity

* Notifications, delegates, KVO

...now, only the future awaits

For more information and updates to this material,
visit my website:
http://alanquatermain.net/

http://alanquatermain.net
http://alanquatermain.net

