
http://alanquatermain.net/

Integration with Time Machine

Jim Dovey
aka Alan Quatermain of AwkwardTV

http://alanquatermain.net
http://alanquatermain.net

What we’ll cover

• Who will use this?

• Concepts and design

• UI elements, events

• Public API (a whole two functions!)

• Private API

• An example Cocoa controller class

What we won’t cover

• Snapshots

• Used by Xcode ?

• Useful for managing non-bundled collections of discrete files

• Triggering backups programatically

• BUBackUpNow() function

Who will use this?

Who will use this?

• Applications managing collections of data

Who will use this?

• Applications managing collections of data

• Address Book, Mail, iPhoto

Who will use this?

• Applications managing collections of data

• Address Book, Mail, iPhoto

• iTunes, iCal

Who will use this?

• Applications managing collections of data

• Address Book, Mail, iPhoto

• iTunes, iCal

• Library, Ledgers, CRM

Who will use this?

• Applications managing collections of data

• Address Book, Mail, iPhoto

• iTunes, iCal

• Library, Ledgers, CRM

• Apps with a desire to handle partial dataset restorations

Who will use this?

• Applications managing collections of data

• Address Book, Mail, iPhoto

• iTunes, iCal

• Library, Ledgers, CRM

• Apps with a desire to handle partial dataset restorations

• CoreData

Concepts and Design

Time Machine User Interface

• One large fullscreen window

Time Machine User Interface

• One large fullscreen window

• A collection of images

• Time Machine ‘windows’ aren’t (necessarily) actual windows

• Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

Time Machine User Interface

• One large fullscreen window

• A collection of images

• Time Machine ‘windows’ aren’t (necessarily) actual windows

• Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

• Time Machine scrolls through these windows for you

Time Machine User Interface

• One large fullscreen window

• A collection of images

• Time Machine ‘windows’ aren’t (necessarily) actual windows

• Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

• Time Machine scrolls through these windows for you

• Your app is alerted when a real window is required, and your
app handles display & input for that window.

Time Machine User Interface

Events and Callbacks
Time Machine handles the interface for you— you only have
to provide some callback routines.

BURegisterStartTimeMachineFromDock(...);
BURegisterRequestSnapshotImage(...);
BURegisterTimeMachineDismissed(...);
BURegisterTimeMachineRestore(...);

Events and Callbacks
Time Machine handles the interface for you— you only have
to provide some callback routines.

BURegisterStartTimeMachineFromDock(...);
BURegisterRequestSnapshotImage(...);
BURegisterTimeMachineDismissed(...);
BURegisterTimeMachineRestore(...);

The ‘events’ posted by Time Machine include the startup request,
actions, dismissal (cancel), restore (one or all), activate/deactivate
snapshot windows, and requests for snapshot or thumbnail
images.

API

Public API

Apple has released two functions:

CSBackupIsItemExcluded(CFURLRef item, Boolean * byPath);
CSBackupSetItemExcluded(CFURLRef item, Boolean exclude,
Boolean byPath);

These routines allow you to inform the backup system of cache
files or other oft-changed data which need not be backed up.

Anything further than this requires that we resort to accessing the
private API…

Private API

Private API

• Request notification of Time Machine invocation

Private API

• Request notification of Time Machine invocation

• Provide callbacks for the Time Machine engine, then start Time
Machine itself

Private API

• Request notification of Time Machine invocation

• Provide callbacks for the Time Machine engine, then start Time
Machine itself

• If in a non-applicable state, don’t start time machine

• Modal loops, active document is untitled/unsaved

Private API

• Request notification of Time Machine invocation

• Provide callbacks for the Time Machine engine, then start Time
Machine itself

• If in a non-applicable state, don’t start time machine

• Modal loops, active document is untitled/unsaved

• Answer callbacks to provide snapshot window images
corresponding to backup data

Private API

• Request notification of Time Machine invocation

• Provide callbacks for the Time Machine engine, then start Time
Machine itself

• If in a non-applicable state, don’t start time machine

• Modal loops, active document is untitled/unsaved

• Answer callbacks to provide snapshot window images
corresponding to backup data

• Handle activation and deactivation of individual snapshots

Private API

• Request notification of Time Machine invocation

• Provide callbacks for the Time Machine engine, then start Time
Machine itself

• If in a non-applicable state, don’t start time machine

• Modal loops, active document is untitled/unsaved

• Answer callbacks to provide snapshot window images
corresponding to backup data

• Handle activation and deactivation of individual snapshots

• Restore if so requested, or else revert to prior state upon
dismissal.

Startup

Startup

• When your app starts, call
BURegisterStartTimeMachineFromDock();

Startup

• When your app starts, call
BURegisterStartTimeMachineFromDock();

• Your callback returns nothing and takes no arguments.

Startup

• When your app starts, call
BURegisterStartTimeMachineFromDock();

• Your callback returns nothing and takes no arguments.

• The callback will fire when the user clicks the Time Machine
icon in the dock. It’s still up to you to launch the Time Machine
UI, however.

Startup

• When your app starts, call
BURegisterStartTimeMachineFromDock();

• Your callback returns nothing and takes no arguments.

• The callback will fire when the user clicks the Time Machine
icon in the dock. It’s still up to you to launch the Time Machine
UI, however.

typedef void (*BUStartTimeMachineCallBack)(void);
void BURegisterStartTimeMachineFromDock(BUStartTimeMachineCallBack

cb);
void BUStartTimeMachine(int windowNumber, CFURLRef urlForWindow,

BUAction flags);

Data Callbacks

Data Callbacks

• Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

Data Callbacks

• Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

• Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

Data Callbacks

• Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

• Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

• To generate a snapshot image, create a window for the data at
the given URL, and call BUUpdateSnapshotImage(), providing the
CG window number (using -[NSWindow windowNumber]) and
the provided URL as parameters.

Data Callbacks

• Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

• Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

• To generate a snapshot image, create a window for the data at
the given URL, and call BUUpdateSnapshotImage(), providing the
CG window number (using -[NSWindow windowNumber]) and
the provided URL as parameters.

typedef void (*BURequestSnapshotImageCallBack)(void * token,
CFURLRef backupURL);

void BURegisterRequestSnapshotImage(void * token,
BURequestSnapshotCallBack callback);

void BUUpdateSnapshotImage(int windowNumber, CFURLRef url);

Snapshot Events

Snapshot Events

• You must provide callbacks to be notified when snapshots are
focussed or blurred.

Snapshot Events

• You must provide callbacks to be notified when snapshots are
focussed or blurred.

• When these callbacks are called, the application must display or
remove a window at the given coordinates.

Snapshot Events

• You must provide callbacks to be notified when snapshots are
focussed or blurred.

• When these callbacks are called, the application must display or
remove a window at the given coordinates.

• When done processing, call BUActivatedSnapshot() or
BUDeactivatedSnapshot() as appropriate.

Snapshot Events

• You must provide callbacks to be notified when snapshots are
focussed or blurred.

• When these callbacks are called, the application must display or
remove a window at the given coordinates.

• When done processing, call BUActivatedSnapshot() or
BUDeactivatedSnapshot() as appropriate.

typedef void (*BUActivateSnapshotCallBack)(void * token, CFURLRef
backupURL, CGRect workingBounds);

typedef void (*BUDeactivateSnapshotCallBack)(void * token, CFURLRef
backupURL);

void BURegisterActivateSnapshot(void * token,
BUActivateSnapshotCallBack callback);

void BURegisterDeactivateSnapshot(void * token,
BUDeactivateSnapshotCallBack callback);

void BUActivatedSnapshot(int windowNumber, CFURLRef url);
void BUDeactivatedSnapshot(int windowNumber, CFURLRef url);

Action Callbacks

Action Callbacks

• Two main actions: restore and dismiss

Action Callbacks

• Two main actions: restore and dismiss

• Restore provides a flag to indicate whether to restore all items
or just a selection.

Action Callbacks

• Two main actions: restore and dismiss

• Restore provides a flag to indicate whether to restore all items
or just a selection.

• Dismissal only triggers after the Time Machine UI has gone away.

Action Callbacks

• Two main actions: restore and dismiss

• Restore provides a flag to indicate whether to restore all items
or just a selection.

• Dismissal only triggers after the Time Machine UI has gone away.

• To programatically dismiss, call BUTimeMachineAction(1);

Action Callbacks

• Two main actions: restore and dismiss

• Restore provides a flag to indicate whether to restore all items
or just a selection.

• Dismissal only triggers after the Time Machine UI has gone away.

• To programatically dismiss, call BUTimeMachineAction(1);

typedef void (*BUTimeMachineDismissedCallBack)(void * token);
typedef void (*BUTimeMachineRestoreCallBack)(void * token, CFURLRef

backupURL, CFURLRef liveURL, Boolean restoreAll,
CFDictionaryRef userInfo);

void BURegisterTimeMachineDismissed(void * token,
BUTimeMachineDismissedCallBack callback);

void BURegisterTimeMachineRestore(void * token,
BUTimeMachineRestoreCallBack calback);

void BUTimeMachineAction(BUAction action);

Cocoa Controller

AQTimeMachineController

AQTimeMachineController

• Implemented in Objective-C 2.0

AQTimeMachineController

• Implemented in Objective-C 2.0

• Singleton class

AQTimeMachineController

• Implemented in Objective-C 2.0

• Singleton class

• Designed to handle most of the work for you

• You shouldn’t need to call BUxxxx() methods yourself

AQTimeMachineController

• Implemented in Objective-C 2.0

• Singleton class

• Designed to handle most of the work for you

• You shouldn’t need to call BUxxxx() methods yourself

• You implement a delegate to provide application-specific data

AQTimeMachineController

• Implemented in Objective-C 2.0

• Singleton class

• Designed to handle most of the work for you

• You shouldn’t need to call BUxxxx() methods yourself

• You implement a delegate to provide application-specific data

• Ideally this delegate should be concerned only with Time
Machine, and should be your only Time Machine-handling class

Properties

• @property(assign) id<AQTimeMachineDelegate> __weak
delegate;

• Synchronized access, non-retaining

• @property NSRect workingBounds;

• The current snapshot bounds set by Time Machine

• @property BOOL changedItemsOnly;

• YES if the UI should only show changed items

• @property BOOL inTimeMachine;

• Check to see if Time Machine actions should be performed

General Functions

• + (AQTimeMachineController *) timeMachineController;

• Fetch the singleton instance

• - (BOOL) canEnterTimeMachine;

• A simple check, will call the delegate

• - (IBAction) browseBackups: (id) sender;

• When you want your own Time Machine button

• - (void) dismissTimeMachine;

• Close down the Time Machine UI

• - (void) invalidateSnapshotImages;

• When your UI has changed, updates snapshots

Controller Tasks

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

• Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

• Miniaturized, visible

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

• Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

• Miniaturized, visible

• Maintains a list of window controller to URL mappings, one for
each snapshot window

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

• Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

• Miniaturized, visible

• Maintains a list of window controller to URL mappings, one for
each snapshot window

• Handles updates to snapshot images

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

• Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

• Miniaturized, visible

• Maintains a list of window controller to URL mappings, one for
each snapshot window

• Handles updates to snapshot images

• Activates and deactivates snapshots, notifying delegate

Controller Tasks

• Handles Time Machine startup notifications

• Requires a delegate to be set prior to this

• Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

• Miniaturized, visible

• Maintains a list of window controller to URL mappings, one for
each snapshot window

• Handles updates to snapshot images

• Activates and deactivates snapshots, notifying delegate

• Calls delegate when a restore action is requested

AQTimeMachineController Code

Delegate Tasks

• Determines whether the app can enter Time Machine

• Creates and returns controllers and data paths for the live
window and any snapshot windows requested

• Implements data restoration

• Optionally:

• Performs setup before & after entering Time Machine

• Performs actions before & after snapshot activation/
deactivation

• Makes any changes required for ‘show changed items only’

• Any app-specific cleanup when Time Machine is dismissed

An NSDocument-based Delegate

Useful Data

Useful Data

• Keep a record of all snapshot NSDocuments, indexed by path
or URL

Useful Data

• Keep a record of all snapshot NSDocuments, indexed by path
or URL

• Keep track of the current document

Useful Data

• Keep a record of all snapshot NSDocuments, indexed by path
or URL

• Keep track of the current document

• Store any document user-interface state which is likely to
change while in Time Machine

• Search box contents, list selections

Useful Data

• Keep a record of all snapshot NSDocuments, indexed by path
or URL

• Keep track of the current document

• Store any document user-interface state which is likely to
change while in Time Machine

• Search box contents, list selections

• Ensure that no documents are editable while in Time Machine

-canEnterTimeMachine

-canEnterTimeMachine

• Check for modal panels:

• [[[NSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

-canEnterTimeMachine

• Check for modal panels:

• [[[NSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

• Check for an open & stored current document:

• [[NSDocumentController sharedDocumentController]
currentDocument]

-canEnterTimeMachine

• Check for modal panels:

• [[[NSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

• Check for an open & stored current document:

• [[NSDocumentController sharedDocumentController]
currentDocument]

• Document must have window controllers

-canEnterTimeMachine

• Check for modal panels:

• [[[NSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

• Check for an open & stored current document:

• [[NSDocumentController sharedDocumentController]
currentDocument]

• Document must have window controllers

• No sheet should be attached:

• [[ctrl window] attachedSheet]

Snapshot window controllers

Snapshot window controllers

• You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

Snapshot window controllers

• You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

• Create using -[NSDocumentController
makeDocumentWithContentsOfURL:ofType:error:]

Snapshot window controllers

• You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

• Create using -[NSDocumentController
makeDocumentWithContentsOfURL:ofType:error:]

• Use -makeWindowControllers to setup the controllers,
rather than letting NSDocument put itself onscreen

Updating snapshots

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

• Set UI state:

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

• Set UI state:

- When activating snapshots

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

• Set UI state:

- When activating snapshots

- When restoring or dismissing Time Machine

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

• Set UI state:

- When activating snapshots

- When restoring or dismissing Time Machine

• Also install your own handlers to invalidate & update snapshots
in response to user activity

Updating snapshots

• Implement the optional notification handlers to store and set
data at appropriate times

• Store UI state:

- Before Time Machine activates

- When deactivating snapshots

• Set UI state:

- When activating snapshots

- When restoring or dismissing Time Machine

• Also install your own handlers to invalidate & update snapshots
in response to user activity

• Notifications, delegates, KVO

Example Delegate Code

…now, only the future awaits

For more information and updates to this material,
visit my website:
http://alanquatermain.net/

http://alanquatermain.net
http://alanquatermain.net

